Voice Identification Using MFCC and Vector Quantization
نویسندگان
چکیده
منابع مشابه
A Vector Quantization Approach for Voice Recognition Using Mel Frequency Cepstral Coefficient (MFCC): A Review
This paper presents a brief survey on Automatic Voice Recognition so as to provide a technological perspective and an appreciation of the fundamental progress that has been accomplished in area of voice communication. The voice is a signal of infinite information. After years of research and development the accuracy of automatic voice recognition remains one of the important research challenges...
متن کاملIsolated Word Recognition Using MFCC and Vector Quantization
Automatic Speech Recognition (ASR) technology is a way to interface with computer. In this paper we describe speech recognition technique using multiple codebooks of MFCC derived features. The proposed algorithm is useful in detecting isolated words of speech. In this algorithm we first create database i.e. codebook by calculating mel frequency cepstral coefficient first and then codeword for e...
متن کاملIntoxicated Speech Detection using MFCC Feature Extraction and Vector Quantization
This study has been done on a technique which is suitable for tapping the telephonic conversation from a remote location to identify intoxication and consequent impaired brain activity that may cause criminal events e.g. DUI (driving under influence). This technique is time efficient, easy to use, non–invasive for the peoples and affordable for law enforcement personnel, bartenders/servers, cou...
متن کاملSpeaker Recognition using MFCC and Improved Weighted Vector Quantization Algorithm
Speaker recognition is one of the most essential tasks in the signal processing which identifies a person from characteristics of voices . In this paper we accomplish speaker recognition using Mel-frequency Cepstral Coefficient (MFCC) with Weighted Vector Quantization algorithm. By using MFCC, the feature extraction process is carried out. It is one of the nonlinear cepstral coefficient functio...
متن کاملVoice Activity Detection Using MFCC Features and Support Vector Machine
We define voice activity detection (VAD) as a binary classification problem and solve it using the support vector machine (SVM). Challenges in SVM-based approach include selection of representative training segments, selection of features, normalization of the features, and post-processing of the frame-level decisions. We propose to construct a SVMVAD using MFCC features because they capture th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Baghdad Science Journal
سال: 2020
ISSN: 2411-7986,2078-8665
DOI: 10.21123/bsj.2020.17.3(suppl.).1019